Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Extended Bit-Plane Compression for Convolutional Neural Network Accelerators (1810.03979v1)

Published 1 Oct 2018 in cs.CV, cs.AI, cs.AR, and cs.LG

Abstract: After the tremendous success of convolutional neural networks in image classification, object detection, speech recognition, etc., there is now rising demand for deployment of these compute-intensive ML models on tightly power constrained embedded and mobile systems at low cost as well as for pushing the throughput in data centers. This has triggered a wave of research towards specialized hardware accelerators. Their performance is often constrained by I/O bandwidth and the energy consumption is dominated by I/O transfers to off-chip memory. We introduce and evaluate a novel, hardware-friendly compression scheme for the feature maps present within convolutional neural networks. We show that an average compression ratio of 4.4x relative to uncompressed data and a gain of 60% over existing method can be achieved for ResNet-34 with a compression block requiring <300 bit of sequential cells and minimal combinational logic.

Citations (20)

Summary

We haven't generated a summary for this paper yet.