Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Proximal Online Gradient is Optimum for Dynamic Regret (1810.03594v6)

Published 8 Oct 2018 in cs.LG and stat.ML

Abstract: In online learning, the dynamic regret metric chooses the reference (optimal) solution that may change over time, while the typical (static) regret metric assumes the reference solution to be constant over the whole time horizon. The dynamic regret metric is particularly interesting for applications such as online recommendation (since the customers' preference always evolves over time). While the online gradient method has been shown to be optimal for the static regret metric, the optimal algorithm for the dynamic regret remains unknown. In this paper, we show that proximal online gradient (a general version of online gradient) is optimum to the dynamic regret by showing that the proved lower bound matches the upper bound that slightly improves existing upper bound.

Citations (7)

Summary

We haven't generated a summary for this paper yet.