Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding Correspondences for Optical Flow and Disparity Estimations using a Sub-pixel Convolution-based Encoder-Decoder Network (1810.03155v1)

Published 7 Oct 2018 in cs.CV and cs.LG

Abstract: Deep convolutional neural networks (DCNN) have recently shown promising results in low-level computer vision problems such as optical flow and disparity estimation, but still, have much room to further improve their performance. In this paper, we propose a novel sub-pixel convolution-based encoder-decoder network for optical flow and disparity estimations, which can extend FlowNetS and DispNet by replacing the deconvolution layers with sup-pixel convolution blocks. By using sub-pixel refinement and estimation on the decoder stages instead of deconvolution, we can significantly improve the estimation accuracy for optical flow and disparity, even with reduced numbers of parameters. We show a supervised end-to-end training of our proposed networks for optical flow and disparity estimations, and an unsupervised end-to-end training for monocular depth and pose estimations. In order to verify the effectiveness of our proposed networks, we perform intensive experiments for (i) optical flow and disparity estimations, and (ii) monocular depth and pose estimations. Throughout the extensive experiments, our proposed networks outperform the baselines such as FlowNetS and DispNet in terms of estimation accuracy and training times.

Citations (1)

Summary

We haven't generated a summary for this paper yet.