2000 character limit reached
Non-dissipative system as limit of a dissipative one: comparison of the asymptotic regimes (1810.03054v2)
Published 6 Oct 2018 in math.AP
Abstract: Let $\Omega \subset \mathbb{R}n$ be a bounded smooth domain (open and connected) in $\mathbb{R}n$. Given $u_0\in L2(\Omega)$, $g\in L\infty(\Omega)$ and $\lambda \in \mathbb{R}$, our purpose is to describe the asymptotic behavior of weak solutions of the family of problems \begin{equation*} \left{ \begin{array}{rcll} \dfrac{\partial u}{\partial t} - \Delta_p u & = & \lambda u + g, & \text{ on } \quad (0,\infty)\times \Omega, \ u & = & 0, & \text{ in } \quad (0,\infty)\times \partial \Omega, \ u(0, \cdot) & = & u_0, & \text{ on } \quad\Omega, \end{array} \right. \end{equation*} as $p \longrightarrow 2+$, where $\Delta_p u:=\rm{div}\big(|\nabla u|{p-2}\nabla u\big)$ denotes the $p$-laplacian operator.