Artificial Intelligence Assisted Power Grid Hardening in Response to Extreme Weather Events (1810.02866v1)
Abstract: In this paper, an artificial intelligence based grid hardening model is proposed with the objective of improving power grid resilience in response to extreme weather events. At first, a machine learning model is proposed to predict the component states (either operational or outage) in response to the extreme event. Then, these predictions are fed into a hardening model, which determines strategic locations for placement of distributed generation (DG) units. In contrast to existing literature in hardening and resilience enhancement, this paper co-optimizes grid economic and resilience objectives by considering the intricate dependencies of the two. The numerical simulations on the standard IEEE 118-bus test system illustrate the merits and applicability of the proposed hardening model. The results indicate that the proposed hardening model through decentralized and distributed local energy resources can produce a more robust solution that can protect the system significantly against multiple component outages due to an extreme event.