Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-Subject Transfer Learning Improves the Practicality of Real-World Applications of Brain-Computer Interfaces (1810.02842v4)

Published 5 Oct 2018 in q-bio.NC, cs.HC, cs.LG, and eess.SP

Abstract: Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) have shown its robustness in facilitating high-efficiency communication. State-of-the-art training-based SSVEP decoding methods such as extended Canonical Correlation Analysis (CCA) and Task-Related Component Analysis (TRCA) are the major players that elevate the efficiency of the SSVEP-based BCIs through a calibration process. However, due to notable human variability across individuals and within individuals over time, calibration (training) data collection is non-negligible and often laborious and time-consuming, deteriorating the practicality of SSVEP BCIs in a real-world context. This study aims to develop a cross-subject transferring approach to reduce the need for collecting training data from a test user with a newly proposed least-squares transformation (LST) method. Study results show the capability of the LST in reducing the number of training templates required for a 40-class SSVEP BCI. The LST method may lead to numerous real-world applications using near-zero-training/plug-and-play high-speed SSVEP BCIs.

Citations (26)

Summary

We haven't generated a summary for this paper yet.