Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scaling Submodular Optimization Approaches for Control Applications in Networked Systems (1810.02837v1)

Published 5 Oct 2018 in cs.LG and stat.ML

Abstract: Often times, in many design problems, there is a need to select a small set of informative or representative elements from a large ground set of entities in an optimal fashion. Submodular optimization that provides for a formal way to solve such problems, has recently received significant attention from the controls community where such subset selection problems are abound. However, scaling these approaches to large systems can be challenging because of the high computational complexity of the overall flow, in-part due to the high-complexity compute-oracles used to determine the objective function values. In this work, we explore a well-known paradigm, namely leader-selection in a multi-agent networked environment to illustrate strategies for scalable submodular optimization. We study the performance of the state-of-the-art stochastic and distributed greedy algorithms as well as explore techniques that accelerate the computation oracles within the optimization loop. We finally present results combining accelerated greedy algorithms with accelerated computation oracles and demonstrate significant speedups with little loss of optimality when compared to the baseline ordinary greedy algorithm.

Citations (1)

Summary

We haven't generated a summary for this paper yet.