Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometric essence of "compact" operators on Hilbert $C^*$-modules (1810.02792v2)

Published 5 Oct 2018 in math.OA and math.FA

Abstract: We introduce a uniform structure on any Hilbert $C*$-module $\mathcal N$ and prove the following theorem: suppose, $F:{\mathcal M}\to {\mathcal N}$ is a bounded adjointable morphism of Hilbert $C*$-modules over $\mathcal A$ and $\mathcal N$ is countably generated. Then $F$ belongs to the Banach space generated by operators $\theta_{x,y}$, $\theta_{x,y}(z):=x\langle y,z\rangle$, $x\in {\mathcal N}$, $y,z\in {\mathcal M}$ (i.e. $F$ is ${\mathcal A}$-compact, or "compact") if and only if $F$ maps the unit ball of ${\mathcal M}$ to a totally bounded set with respect to this uniform structure (i.e. $F$ is a compact operator).

Summary

We haven't generated a summary for this paper yet.