Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subdeterminants and Concave Integer Quadratic Programming (1810.02763v2)

Published 5 Oct 2018 in math.OC and cs.CC

Abstract: We consider the NP-hard problem of minimizing a separable concave quadratic function over the integral points in a polyhedron, and we denote by D the largest absolute value of the subdeterminants of the constraint matrix. In this paper we give an algorithm that finds an epsilon-approximate solution for this problem by solving a number of integer linear programs whose constraint matrices have subdeterminants bounded by D in absolute value. The number of these integer linear programs is polynomial in the dimension n, in D and in 1/epsilon, provided that the number k of variables that appear nonlinearly in the objective is fixed. As a corollary, we obtain the first polynomial-time approximation algorithm for separable concave integer quadratic programming with D at most two and k fixed. In the totally unimodular case D=1, we give an improved algorithm that only needs to solve a number of linear programs that is polynomial in 1/epsilon and is independent on n, provided that k is fixed.

Summary

We haven't generated a summary for this paper yet.