Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerated Decentralized Optimization with Local Updates for Smooth and Strongly Convex Objectives (1810.02660v3)

Published 5 Oct 2018 in math.OC, cs.DC, and cs.LG

Abstract: In this paper, we study the problem of minimizing a sum of smooth and strongly convex functions split over the nodes of a network in a decentralized fashion. We propose the algorithm $ESDACD$, a decentralized accelerated algorithm that only requires local synchrony. Its rate depends on the condition number $\kappa$ of the local functions as well as the network topology and delays. Under mild assumptions on the topology of the graph, $ESDACD$ takes a time $O((\tau_{\max} + \Delta_{\max})\sqrt{{\kappa}/{\gamma}}\ln(\epsilon{-1}))$ to reach a precision $\epsilon$ where $\gamma$ is the spectral gap of the graph, $\tau_{\max}$ the maximum communication delay and $\Delta_{\max}$ the maximum computation time. Therefore, it matches the rate of $SSDA$, which is optimal when $\tau_{\max} = \Omega\left(\Delta_{\max}\right)$. Applying $ESDACD$ to quadratic local functions leads to an accelerated randomized gossip algorithm of rate $O( \sqrt{\theta_{\rm gossip}/n})$ where $\theta_{\rm gossip}$ is the rate of the standard randomized gossip. To the best of our knowledge, it is the first asynchronous gossip algorithm with a provably improved rate of convergence of the second moment of the error. We illustrate these results with experiments in idealized settings.

Citations (40)

Summary

We haven't generated a summary for this paper yet.