Papers
Topics
Authors
Recent
2000 character limit reached

Incorporation of macroscopic heterogeneity within a porous layer to enhance its acoustic absorptance

Published 4 Oct 2018 in physics.app-ph | (1810.02101v1)

Abstract: We seek the response, in particular the spectral absorptance, of a rigidly-backed periodically-(in one horizontal~~ direction) ~inhomogeneous ~layer ~composed ~of ~alternating rigid and macroscopically-homogeneous porous portions, submitted to an airborne acoustic plane body wave. The rigorous theory of this problem is given and the means by which the latter can be numerically solved are outlined. At low frequencies, a suitable approximation derives from one linear equation in one unknown. This approximate solution is shown to be equivalent to that of the problem of the same wave incident on a homogeneous, isotropic layer. The thickness $h$ of this layer is identical to that of the inhomogeneous layer, the effective complex body wave velocity therein is identical to that of the porous portion of the inhomogeneous layer, but the complex effective mass density, whose expression is given in explicit algebraic form, is that of the reference homogeneous macroscopically-porous layer divided by the filling factor (fraction of porous material to the total material in one grating period). This difference of density is the reason why it is possible for the lowest-frequency absorptance peak to be higher than that of a reference layer. Also, it is shown how to augment the height of this peak so that it attains unity (i.e., total absorption) and how to shift it to lower frequencies, as is required in certain applications.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.