Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An FE-dABCD algorithm for elliptic optimal control problems with constraints on the gradient of the state and control (1810.01923v1)

Published 3 Oct 2018 in math.OC

Abstract: In this paper, elliptic control problems with integral constraint on the gradient of the state and box constraints on the control are considered. The optimal conditions of the problem are proved. To numerically solve the problem, we use the 'First discretize, then optimize' approach. Specifically, we discretize both the state and the control by piecewise linear functions. To solve the discretized problem efficiently, we first transform it into a multi-block unconstrained convex optimization problem via its dual, then we extend the inexact majorized accelerating block coordinate descent (imABCD) algorithm to solve it. The entire algorithm framework is called finite element duality-based inexact majorized accelerating block coordinate descent (FE-dABCD) algorithm. Thanks to the inexactness of the FE-dABCD algorithm, each subproblems are allowed to be solved inexactly. For the smooth subproblem, we use the generalized minimal residual (GMRES) method with preconditioner to slove it. For the nonsmooth subproblems, one of them has a closed form solution through introducing appropriate proximal term, another is solved combining semi-smooth Newton (SSN) method. Based on these efficient strategies, we prove that our proposed FE-dABCD algorithm enjoys $O(\frac{1}{k2})$ iteration complexity. Some numerical experiments are done and the numerical results show the efficiency of the FE-dABCD algorithm.

Summary

We haven't generated a summary for this paper yet.