Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Grounding the Experience of a Visual Field through Sensorimotor Contingencies (1810.01871v1)

Published 3 Oct 2018 in cs.LG, cs.AI, cs.RO, and stat.ML

Abstract: Artificial perception is traditionally handled by hand-designing task specific algorithms. However, a truly autonomous robot should develop perceptive abilities on its own, by interacting with its environment, and adapting to new situations. The sensorimotor contingencies theory proposes to ground the development of those perceptive abilities in the way the agent can actively transform its sensory inputs. We propose a sensorimotor approach, inspired by this theory, in which the agent explores the world and discovers its properties by capturing the sensorimotor regularities they induce. This work presents an application of this approach to the discovery of a so-called visual field as the set of regularities that a visual sensor imposes on a naive agent's experience. A formalism is proposed to describe how those regularities can be captured in a sensorimotor predictive model. Finally, the approach is evaluated on a simulated system coarsely inspired from the human retina.

Citations (14)

Summary

We haven't generated a summary for this paper yet.