Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contextual Multi-Armed Bandits for Causal Marketing (1810.01859v1)

Published 2 Oct 2018 in cs.LG and stat.ML

Abstract: This work explores the idea of a causal contextual multi-armed bandit approach to automated marketing, where we estimate and optimize the causal (incremental) effects. Focusing on causal effect leads to better return on investment (ROI) by targeting only the persuadable customers who wouldn't have taken the action organically. Our approach draws on strengths of causal inference, uplift modeling, and multi-armed bandits. It optimizes on causal treatment effects rather than pure outcome, and incorporates counterfactual generation within data collection. Following uplift modeling results, we optimize over the incremental business metric. Multi-armed bandit methods allow us to scale to multiple treatments and to perform off-policy policy evaluation on logged data. The Thompson sampling strategy in particular enables exploration of treatments on similar customer contexts and materialization of counterfactual outcomes. Preliminary offline experiments on a retail Fashion marketing dataset show merits of our proposal.

Citations (29)

Summary

We haven't generated a summary for this paper yet.