Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Operator-valued zeta functions and Fourier analysis (1810.01821v2)

Published 28 Sep 2018 in math.NT, math-ph, math.MP, and quant-ph

Abstract: The Riemann zeta function $\zeta(s)$ is defined as the infinite sum $\sum_{n=1}\infty n{-s}$, which converges when ${\rm Re}\,s>1$. The Riemann hypothesis asserts that the nontrivial zeros of $\zeta(s)$ lie on the line ${\rm Re}\,s= \frac{1}{2}$. Thus, to find these zeros it is necessary to perform an analytic continuation to a region of complex $s$ for which the defining sum does not converge. This analytic continuation is ordinarily performed by using a functional equation. In this paper it is argued that one can investigate some properties of the Riemann zeta function in the region ${\rm Re}\,s<1$ by allowing operator-valued zeta functions to act on test functions. As an illustration, it is shown that the locations of the trivial zeros can be determined purely from a Fourier series, without relying on an explicit analytic continuation of the functional equation satisfied by $\zeta(s)$.

Summary

We haven't generated a summary for this paper yet.