Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geodesic motion on the groups of diffeomorphisms with $H^1$ metric as geometric generalised Lagrangian mean theory (1810.01377v1)

Published 2 Oct 2018 in math-ph and math.MP

Abstract: Generalized Lagrangian mean theories are used to analyze the interactions between mean flows and fluctuations, where the decomposition is based on a Lagrangian description of the flow. A systematic geometric framework was recently developed by Gilbert and Vanneste (J. Fluid Mech., 2018) who cast the decomposition in terms of intrinsic operations on the group of volume preserving diffeomorphism or on the full diffeomorphism group. In this setting, the mean of an ensemble of maps can be defined as the Riemannian center of mass on either of these groups. We apply this decomposition in the context of Lagrangian averaging where equations of motion for the mean flow arise via a variational principle from a mean Lagrangian, obtained from the kinetic energy Lagrangian of ideal fluid flow via a small amplitude expansion for the fluctuations. We show that the Euler-$\alpha$ equations arise as Lagrangian averaged Euler equations when using the $L2$-geodesic mean on the volume preserving diffeomorphism group of a manifold without boundaries, imposing a `Taylor hypothesis', which states that first order fluctuations are transported as a vector field by the mean flow, and assuming that fluctuations are statistically isotropic. Similarly, the EPDiff equations arise as the Lagrangian averaged Burgers' equations using the same argument on the full diffeomorphism group. These results generalize an earlier observation by Oliver (Proc. R. Soc. A, 2017) to manifolds in geometrically fully intrinsic terms.

Summary

We haven't generated a summary for this paper yet.