Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometric normal subgroups in mapping class groups of punctured surfaces (1810.00742v1)

Published 1 Oct 2018 in math.GT

Abstract: We prove that many normal subgroups of the extended mapping class group of a surface with punctures are geometric, that is, that their automorphism groups and abstract commensurator groups are isomorphic to the extended mapping class group. In order to apply our theorem to a normal subgroup we require that the "minimal supports" of its elements satisfy a certain complexity condition that is easy to check in practice. The key ingredient is proving that the automorphism groups of many simplicial complexes associated to punctured surfaces are isomorphic to the extended mapping class group. This resolves many cases of a metaconjecture of N. V. Ivanov and extends work of Brendle-Margalit, who prove the result for surfaces without punctures.

Summary

We haven't generated a summary for this paper yet.