Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fusion Hashing: A General Framework for Self-improvement of Hashing (1810.00644v1)

Published 1 Oct 2018 in cs.DS and cs.MM

Abstract: Hashing has been widely used for efficient similarity search based on its query and storage efficiency. To obtain better precision, most studies focus on designing different objective functions with different constraints or penalty terms that consider neighborhood information. In this paper, in contrast to existing hashing methods, we propose a novel generalized framework called fusion hashing (FH) to improve the precision of existing hashing methods without adding new constraints or penalty terms. In the proposed FH, given an existing hashing method, we first execute it several times to get several different hash codes for a set of training samples. We then propose two novel fusion strategies that combine these different hash codes into one set of final hash codes. Based on the final hash codes, we learn a simple linear hash function for the samples that can significantly improve model precision. In general, the proposed FH can be adopted in existing hashing method and achieve more precise and stable performance compared to the original hashing method with little extra expenditure in terms of time and space. Extensive experiments were performed based on three benchmark datasets and the results demonstrate the superior performance of the proposed framework

Summary

We haven't generated a summary for this paper yet.