Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying Bias in AI using Simulation (1810.00471v1)

Published 30 Sep 2018 in cs.LG and stat.ML

Abstract: Machine learned models exhibit bias, often because the datasets used to train them are biased. This presents a serious problem for the deployment of such technology, as the resulting models might perform poorly on populations that are minorities within the training set and ultimately present higher risks to them. We propose to use high-fidelity computer simulations to interrogate and diagnose biases within ML classifiers. We present a framework that leverages Bayesian parameter search to efficiently characterize the high dimensional feature space and more quickly identify weakness in performance. We apply our approach to an example domain, face detection, and show that it can be used to help identify demographic biases in commercial face application programming interfaces (APIs).

Citations (22)

Summary

We haven't generated a summary for this paper yet.