Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GPU acceleration of an iterative scheme for gas-kinetic model equations with memory reduction techniques (1810.00348v1)

Published 30 Sep 2018 in physics.comp-ph and physics.flu-dyn

Abstract: This paper presents a Graphics Processing Units (GPUs) acceleration method of an iterative scheme for gas-kinetic model equations. Unlike the previous GPU parallelization of explicit kinetic schemes, this work features a fast converging iterative scheme. The memory reduction techniques in this method enable full three-dimensional (3D) solution of kinetic model equations in contemporary GPUs usually with a limited memory capacity that otherwise would need terabytes of memory. The GPU algorithm is validated against the DSMC simulation of the 3D lid-driven cavity flow and the supersonic rarefied gas flow past a cube with grids size up to 0.7 trillion points in the phase space. The performance of the GPU algorithm is assessed by comparing with the corresponding parallel CPU program using Message Passing Interface (MPI). The profiling on several models of GPUs shows that the algorithm has a medium to high level of utilization of the GPUs' computing and memory resources. A $190\times$ speedup can be achieved on the Tesla K40 GPUs against a single core of Intel Xeon-E5-2680v3 CPU for the 3D lid-driven cavity flow.

Summary

We haven't generated a summary for this paper yet.