Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Newton-MR: Inexact Newton Method With Minimum Residual Sub-problem Solver (1810.00303v4)

Published 30 Sep 2018 in math.OC and cs.LG

Abstract: We consider a variant of inexact Newton Method, called Newton-MR, in which the least-squares sub-problems are solved approximately using Minimum Residual method. By construction, Newton-MR can be readily applied for unconstrained optimization of a class of non-convex problems known as invex, which subsumes convexity as a sub-class. For invex optimization, instead of the classical Lipschitz continuity assumptions on gradient and Hessian, Newton-MR's global convergence can be guaranteed under a weaker notion of joint regularity of Hessian and gradient. We also obtain Newton-MR's problem-independent local convergence to the set of minima. We show that fast local/global convergence can be guaranteed under a novel inexactness condition, which, to our knowledge, is much weaker than the prior related works. Numerical results demonstrate the performance of Newton-MR as compared with several other Newton-type alternatives on a few machine learning problems.

Citations (11)

Summary

We haven't generated a summary for this paper yet.