Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-local NetVLAD Encoding for Video Classification (1810.00207v1)

Published 29 Sep 2018 in cs.CV

Abstract: This paper describes our solution for the 2$\text{nd}$ YouTube-8M video understanding challenge organized by Google AI. Unlike the video recognition benchmarks, such as Kinetics and Moments, the YouTube-8M challenge provides pre-extracted visual and audio features instead of raw videos. In this challenge, the submitted model is restricted to 1GB, which encourages participants focus on constructing one powerful single model rather than incorporating of the results from a bunch of models. Our system fuses six different sub-models into one single computational graph, which are categorized into three families. More specifically, the most effective family is the model with non-local operations following the NetVLAD encoding. The other two family models are Soft-BoF and GRU, respectively. In order to further boost single models performance, the model parameters of different checkpoints are averaged. Experimental results demonstrate that our proposed system can effectively perform the video classification task, achieving 0.88763 on the public test set and 0.88704 on the private set in terms of GAP@20, respectively. We finally ranked at the fourth place in the YouTube-8M video understanding challenge.

Citations (38)

Summary

We haven't generated a summary for this paper yet.