Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Entropy of Cantor--like measures (1810.00201v1)

Published 29 Sep 2018 in math.MG

Abstract: By a Cantor-like measure we mean the unique self-similar probability measure $\mu $ satisfying $\mu =\sum_{i=0}{m-1}p_{i}\mu \circ S_{i}{-1}$ where $% S_{i}(x)=\frac{x}{d}+\frac{i}{d}\cdot \frac{d-1}{m-1}$ for integers $2\leq d<m\le 2d-1$ and probabilities $p_{i}\>0$, $\sum p_{i}=1$. In the uniform case ($p_{i}=1/m$ for all $i$) we show how one can compute the entropy and Hausdorff dimension to arbitrary precision. In the non-uniform case we find bounds on the entropy.

Summary

We haven't generated a summary for this paper yet.