Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complex algebraic compactifications of the moduli space of Hermitian-Yang-Mills connections on a projective manifold (1810.00025v3)

Published 28 Sep 2018 in math.DG, math.AG, and math.CV

Abstract: In this paper we study the relationship between three compactifications of the moduli space of Hermitian-Yang-Mills connections on a fixed Hermitian vector bundle over a projective algebraic manifold of arbitrary dimension. Via the Donaldson-Uhlenbeck-Yau theorem, this space is analytically isomorphic to the moduli space of stable holomorphic vector bundles, and as such it admits an algebraic compactification by Gieseker-Maruyama semistable torsion-free sheaves. A recent construction due to the first and third authors gives another compactification as a moduli space of slope semistable sheaves. In the present article, following fundamental work of Tian generalising the analysis of Uhlenbeck and Donaldson in complex dimension two, we define a gauge theoretic compactification by adding certain ideal connections at the boundary. Extending work of Jun Li in the case of bundles on algebraic surfaces, we exhibit comparison maps from the sheaf theoretic compactifications and prove their continuity. The continuity, together with a delicate analysis of the fibres of the map from the moduli space of slope semistable sheaves allows us to endow the gauge theoretic compactification with the structure of a complex analytic space.

Summary

We haven't generated a summary for this paper yet.