Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Port-Hamiltonian formulation and symplectic discretization of Plate models. Part I : Mindlin model for thick plates (1809.11131v3)

Published 28 Sep 2018 in math.AP

Abstract: The port-Hamiltonian formulation is a powerful method for modeling and interconnecting systems of different natures. In this paper, the port-Hamiltonian formulation in tensorial form of a thick plate described by the Mindlin-Reissner model is presented. Boundary control and observation are taken into account. Thanks to tensorial calculus, it can be seen that the Mindlin plate model mimics the interconnection structure of its one-dimensional counterpart, i.e. the Timoshenko beam. The Partitioned Finite Element Method (PFEM) is then extended to both the vectorial and tensorial formulations in order to obtain a suitable, i.e. structure-preserving, finite-dimensional port-Hamiltonian system (PHs), which preserves the structure and properties of the original distributed parameter system. Mixed boundary conditions are finally handled by introducing some algebraic constraints. Numerical examples are finally presented to validate this approach.

Summary

We haven't generated a summary for this paper yet.