Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homogenization of the heat equation with a vanishing volumetric heat capacity (1809.11019v2)

Published 28 Sep 2018 in math.AP

Abstract: This paper is devoted to the homogenization of the heat conduction equation, with a homogeneous Dirichlet boundary condition, having a periodically oscillating thermal conductivity and a vanishing volumetric heat capacity. A homogenization result is established by using the evolution settings of multiscale and very weak multiscale convergence. In particular, we investigate how the relation between the volumetric heat capacity and the microscopic structure effects the homogenized problem and its associated local problem. It turns out that the properties of the microscopic geometry of the problem give rise to certain special effects in the homogenization result.

Summary

We haven't generated a summary for this paper yet.