Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A model for system developers to measure the privacy risk of data (1809.10884v1)

Published 28 Sep 2018 in cs.CR

Abstract: In this paper, we propose a model that could be used by system developers to measure the privacy risk perceived by users when they disclose data into software systems. We first derive a model to measure the perceived privacy risk based on existing knowledge and then we test our model through a survey with 151 participants. Our findings revealed that users' perceived privacy risk monotonically increases with data sensitivity and visibility, and monotonically decreases with data relevance to the application. Furthermore, how visible data is in an application by default when the user discloses data had the highest impact on the perceived privacy risk. This model would enable developers to measure the users' perceived privacy risk associated with data items, which would help them to understand how to treat different data within a system design.

Citations (9)

Summary

We haven't generated a summary for this paper yet.