Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Confidence Sets using Support Vector Machines (1809.10818v1)

Published 28 Sep 2018 in stat.ML and cs.LG

Abstract: The goal of confidence-set learning in the binary classification setting is to construct two sets, each with a specific probability guarantee to cover a class. An observation outside the overlap of the two sets is deemed to be from one of the two classes, while the overlap is an ambiguity region which could belong to either class. Instead of plug-in approaches, we propose a support vector classifier to construct confidence sets in a flexible manner. Theoretically, we show that the proposed learner can control the non-coverage rates and minimize the ambiguity with high probability. Efficient algorithms are developed and numerical studies illustrate the effectiveness of the proposed method.

Citations (12)

Summary

We haven't generated a summary for this paper yet.