Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supporting Answerers with Feedback in Social Q&A (1809.10266v1)

Published 26 Sep 2018 in cs.SI and cs.HC

Abstract: Prior research has examined the use of Social Question and Answer (Q&A) websites for answer and help seeking. However, the potential for these websites to support domain learning has not yet been realized. Helping users write effective answers can be beneficial for subject area learning for both answerers and the recipients of answers. In this study, we examine the utility of crowdsourced, criteria-based feedback for answerers on a student-centered Q&A website, Brainly.com. In an experiment with 55 users, we compared perceptions of the current rating system against two feedback designs with explicit criteria (Appropriate, Understandable, and Generalizable). Contrary to our hypotheses, answerers disagreed with and rejected the criteria-based feedback. Although the criteria aligned with answerers' goals, and crowdsourced ratings were found to be objectively accurate, the norms and expectations for answers on Brainly conflicted with our design. We conclude with implications for the design of feedback in social Q&A.

Citations (5)

Summary

We haven't generated a summary for this paper yet.