The influence of oscillations on energy estimates for damped wave models with time-dependent propagation speed and dissipation (1809.10179v2)
Abstract: The aim of this paper is to derive higher order energy estimates for solutions to the Cauchy problem for damped wave models with time-dependent propagation speed and dissipation. The model of interest is \begin{equation*} u_{tt}-\lambda2(t)\omega2(t)\Delta u +\rho(t)\omega(t)u_t=0, \quad u(0,x)=u_0(x), \,\, u_t(0,x)=u_1(x). \end{equation*} The coefficients $\lambda=\lambda(t)$ and $\rho=\rho(t)$ are shape functions and $\omega=\omega(t)$ is an oscillating function. If $\omega(t)\equiv1$ and $\rho(t)u_t$ is an "effective" dissipation term, then $L2-L2$ energy estimates are proved in [2]. In contrast, the main goal of the present paper is to generalize the previous results to coefficients including an oscillating function in the time-dependent coefficients. We will explain how the interplay between the shape functions and oscillating behavior of the coefficient will influence energy estimates.