Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning through Probing: a decentralized reinforcement learning architecture for social dilemmas (1809.10007v2)

Published 26 Sep 2018 in cs.MA, cs.AI, cs.GT, and cs.LG

Abstract: Multi-agent reinforcement learning has received significant interest in recent years notably due to the advancements made in deep reinforcement learning which have allowed for the developments of new architectures and learning algorithms. Using social dilemmas as the training ground, we present a novel learning architecture, Learning through Probing (LTP), where agents utilize a probing mechanism to incorporate how their opponent's behavior changes when an agent takes an action. We use distinct training phases and adjust rewards according to the overall outcome of the experiences accounting for changes to the opponents behavior. We introduce a parameter eta to determine the significance of these future changes to opponent behavior. When applied to the Iterated Prisoner's Dilemma (IPD), LTP agents demonstrate that they can learn to cooperate with each other, achieving higher average cumulative rewards than other reinforcement learning methods while also maintaining good performance in playing against static agents that are present in Axelrod tournaments. We compare this method with traditional reinforcement learning algorithms and agent-tracking techniques to highlight key differences and potential applications. We also draw attention to the differences between solving games and societal-like interactions and analyze the training of Q-learning agents in makeshift societies. This is to emphasize how cooperation may emerge in societies and demonstrate this using environments where interactions with opponents are determined through a random encounter format of the IPD.

Citations (3)

Summary

We haven't generated a summary for this paper yet.