Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error Reduction Network for DBLSTM-based Voice Conversion (1809.09841v1)

Published 26 Sep 2018 in eess.AS

Abstract: So far, many of the deep learning approaches for voice conversion produce good quality speech by using a large amount of training data. This paper presents a Deep Bidirectional Long Short-Term Memory (DBLSTM) based voice conversion framework that can work with a limited amount of training data. We propose to implement a DBLSTM based average model that is trained with data from many speakers. Then, we propose to perform adaptation with a limited amount of target data. Last but not least, we propose an error reduction network that can improve the voice conversion quality even further. The proposed framework is motivated by three observations. Firstly, DBLSTM can achieve a remarkable voice conversion by considering the long-term dependencies of the speech utterance. Secondly, DBLSTM based average model can be easily adapted with a small amount of data, to achieve a speech that sounds closer to the target. Thirdly, an error reduction network can be trained with a small amount of training data, and can improve the conversion quality effectively. The experiments show that the proposed voice conversion framework is flexible to work with limited training data and outperforms the traditional frameworks in both objective and subjective evaluations.

Citations (13)

Summary

We haven't generated a summary for this paper yet.