Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Equi-difference Conflict-avoiding Codes (1809.09300v1)

Published 25 Sep 2018 in cs.IT and math.IT

Abstract: An equi-differece conflict-avoiding code $(CAC{e})\ \mathcal{C}$ of length $n$ and weight $\omega$ is a collection of $\omega$-subsets (called codewords) which has the form ${0,i,2i,\cdots,(\omega-1)i}$ of $\mathbb{Z}{n}$ such that $\Delta(c{1})\cap\Delta(c_{2})=\emptyset$ holds for any $c_{1},\ c_{2}\in\mathcal{C}$, $c_{1}\neq c_{2}$ where $\Delta(c)={j-i \ (\mbox{mod}\ n) \; | \; i,j\in c,i\neq j}.$ A code $\mathcal{C}\in CAC{e}s$ with maximum code size for given $n$ and $\omega$ is called optimal and is said to be perfect if $\cup_{c\in \mathcal{C}}\Delta(c)=\mathbb{Z}{n}\backslash {0}.$ In this paper, we show how to combine a $\mathcal{C}{1}\in CAC{e}(q_{1},\omega)$ and a $\mathcal{C}{2}\in CAC{e}(q{2},\omega)$ into a $\mathcal{C}\in CAC{e}(q_{1}q_{2},\omega)$ under certain conditions. One necessary condition for a $CAC{e}$ of length $q_{1}q_{2}$ and weight $\omega$ being optimal is given. We also consider explicit construction of perfect $\mathcal{C}\in CAC{e}(p,\omega)$ of odd prime $p$ and weight $\omega\geq3$. Finally, for positive integer $k$ and prime $p\equiv1 \ (\mbox{mod}\ 4k)$, we consider explicit construction of quasi-perfect $\mathcal{C}\in CAC{e}(2p,4k+1)$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.