Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stack-sorting for Words (1809.09158v2)

Published 24 Sep 2018 in math.CO

Abstract: We introduce operators $\mathsf{hare}$ and $\mathsf{tortoise}$, which act on words as natural generalizations of West's stack-sorting map. We show that the heuristically slower algorithm $\mathsf{tortoise}$ can sort words arbitrarily faster than its counterpart $\mathsf{hare}$. We then generalize the combinatorial objects known as valid hook configurations in order to find a method for computing the number of preimages of any word under these two operators. We relate the question of determining which words are sortable by $\mathsf{hare}$ and $\mathsf{tortoise}$ to more classical problems in pattern avoidance, and we derive a recurrence for the number of words with a fixed number of copies of each letter (permutations of a multiset) that are sortable by each map. In particular, we use generating trees to prove that the $\ell$-uniform words on the alphabet $[n]$ that avoid the patterns $231$ and $221$ are counted by the $(\ell+1)$-Catalan number $\frac{1}{\ell n+1}{(\ell+1)n\choose n}$. We conclude with several open problems and conjectures.

Summary

We haven't generated a summary for this paper yet.