Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Penalized regression adjusted causal effect estimates in high dimensional randomized experiments (1809.08732v1)

Published 24 Sep 2018 in math.ST and stat.TH

Abstract: Regression adjustments are often considered by investigators to improve the estimation efficiency of causal effect in randomized experiments when there exists many pre-experiment covariates. In this paper, we provide conditions that guarantee the penalized regression including the Ridge, Elastic Net and Adapive Lasso adjusted causal effect estimators are asymptotic normal and we show that their asymptotic variances are no greater than that of the simple difference-in-means estimator, as long as the penalized estimators are risk consistent. We also provide conservative estimators for the asymptotic variance which can be used to construct asymptotically conservative confidence intervals for the average causal effect (ACE). Our results are obtained under the Neyman-Rubin potential outcomes model of randomized experiment when the number of covariates is large. Simulation study shows the advantages of the penalized regression adjusted ACE estimators over the difference-in-means estimator.

Summary

We haven't generated a summary for this paper yet.