Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Is Ordered Weighted $\ell_1$ Regularized Regression Robust to Adversarial Perturbation? A Case Study on OSCAR (1809.08706v2)

Published 24 Sep 2018 in stat.ML and cs.LG

Abstract: Many state-of-the-art machine learning models such as deep neural networks have recently shown to be vulnerable to adversarial perturbations, especially in classification tasks. Motivated by adversarial machine learning, in this paper we investigate the robustness of sparse regression models with strongly correlated covariates to adversarially designed measurement noises. Specifically, we consider the family of ordered weighted $\ell_1$ (OWL) regularized regression methods and study the case of OSCAR (octagonal shrinkage clustering algorithm for regression) in the adversarial setting. Under a norm-bounded threat model, we formulate the process of finding a maximally disruptive noise for OWL-regularized regression as an optimization problem and illustrate the steps towards finding such a noise in the case of OSCAR. Experimental results demonstrate that the regression performance of grouping strongly correlated features can be severely degraded under our adversarial setting, even when the noise budget is significantly smaller than the ground-truth signals.

Citations (5)

Summary

We haven't generated a summary for this paper yet.