Papers
Topics
Authors
Recent
2000 character limit reached

Multiplicative combinatorial properties of return time sets in minimal dynamical systems

Published 23 Sep 2018 in math.DS | (1809.08702v3)

Abstract: We investigate the relationship between the dynamical properties of minimal topological dynamical systems and the multiplicative combinatorial properties of return time sets arising from those systems. In particular, we prove that for a residual sets of points in any minimal system, the set of return times to any non-empty, open set contains arbitrarily long geometric progressions. Under the separate assumptions of total minimality and distality, we prove that return time sets have positive multiplicative upper Banach density along $\mathbb{N}$ and along multiplicative subsemigroups of $\mathbb{N}$, respectively. The primary motivation for this work is the long-standing open question of whether or not syndetic subsets of the positive integers contain arbitrarily long geometric progressions; our main result is some evidence for an affirmative answer to this question.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.