Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A 2-Approximation Algorithm for Feedback Vertex Set in Tournaments (1809.08437v1)

Published 22 Sep 2018 in cs.DS

Abstract: A {\em tournament} is a directed graph $T$ such that every pair of vertices is connected by an arc. A {\em feedback vertex set} is a set $S$ of vertices in $T$ such that $T - S$ is acyclic. We consider the {\sc Feedback Vertex Set} problem in tournaments. Here the input is a tournament $T$ and a weight function $w : V(T) \rightarrow \mathbb{N}$ and the task is to find a feedback vertex set $S$ in $T$ minimizing $w(S) = \sum_{v \in S} w(v)$. We give the first polynomial time factor $2$ approximation algorithm for this problem. Assuming the Unique Games conjecture, this is the best possible approximation ratio achievable in polynomial time.

Citations (4)

Summary

We haven't generated a summary for this paper yet.