Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tail probabilities for short-term returns on stocks (1809.08416v2)

Published 22 Sep 2018 in q-fin.ST

Abstract: We consider the tail probabilities of stock returns for a general class of stochastic volatility models. In these models, the stochastic differential equation for volatility is autonomous, time-homogeneous and dependent on only a finite number of dimensional parameters. Three bounds on the high-volatility limits of the drift and diffusion coefficients of volatility ensure that volatility is mean-reverting, has long memory and is as volatile as the stock price. Dimensional analysis then provides leading-order approximations to the drift and diffusion coefficients of volatility for the high-volatility limit. Thereby, using the Kolmogorov forward equation for the transition probability of volatility, we find that the tail probability for short-term returns falls off like an inverse cubic. Our analysis then provides a possible explanation for the inverse cubic fall off that Gopikrishnan et al. (1998) report for returns over 5-120 minutes intervals. We find, moreover, that the tail probability scales like the length of the interval, over which the return is measured, to the power 3/2. There do not seem to be any empirical results in the literature with which to compare this last prediction.

Summary

We haven't generated a summary for this paper yet.