Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error Analysis of the Stochastic Linear Feedback Particle Filter (1809.07892v1)

Published 20 Sep 2018 in math.PR and cs.SY

Abstract: This paper is concerned with the convergence and long-term stability analysis of the feedback particle filter (FPF) algorithm. The FPF is an interacting system of $N$ particles where the interaction is designed such that the empirical distribution of the particles approximates the posterior distribution. It is known that in the mean-field limit ($N=\infty$), the distribution of the particles is equal to the posterior distribution. However little is known about the convergence to the mean-field limit. In this paper, we consider the FPF algorithm for the linear Gaussian setting. In this setting, the algorithm is similar to the ensemble Kalman-Bucy filter algorithm. Although these algorithms have been numerically evaluated and widely used in applications, their convergence and long-term stability analysis remains an active area of research. In this paper, we show that, (i) the mean-field limit is well-defined with a unique strong solution; (ii) the mean-field process is stable with respect to the initial condition; (iii) we provide conditions such that the finite-$N$ system is long term stable and we obtain some mean-squared error estimates that are uniform in time.

Citations (7)

Summary

We haven't generated a summary for this paper yet.