Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reverse Markov- and Bernstein-type inequalities for incomplete polynomials (1809.07733v1)

Published 20 Sep 2018 in math.CA

Abstract: Let ${\mathcal P}k$ denote the set of all algebraic polynomials of degree at most $k$ with real coefficients. Let ${\mathcal P}{n,k}$ be the set of all algebraic polynomials of degree at most $n+k$ having exactly $n+1$ zeros at $0$. Let $$|f|A := \sup{x \in A}{|f(x)|}$$ for real-valued functions $f$ defined on a set $A \subset {\Bbb R}$. Let $$V_ab(f) := \int_ab{|f{\prime}(x)| \, dx}$$ denote the total variation of a continuously differentiable function $f$ on an interval $[a,b]$. We prove that there are absolute constants $c_1 > 0$ and $c_2 > 0$ such that $$c_1 \frac nk\leq \min_{P \in {\mathcal P}{n,k}}{\frac{|P{\prime}|{[0,1]}}{V_01(P)}} \leq \min_{P \in {\mathcal P}{n,k}}{\frac{|P{\prime}|{[0,1]}}{|P(1)|}} \leq c_2 \left( \frac nk + 1 \right)$$ for all integers $n \geq 1$ and $k \geq 1$. We also prove that there are absolute constants $c_1 > 0$ and $c_2 > 0$ such that $$c_1 \left(\frac nk\right){1/2} \leq \min_{P \in {\mathcal P}{n,k}}{\frac{|P{\prime}(x)\sqrt{1-x2}|{[0,1]}}{V_01(P)}} \leq \min_{P \in {\mathcal P}{n,k}}{\frac{|P{\prime}(x)\sqrt{1-x2}|{[0,1]}}{|P(1)|}} \leq c_2 \left(\frac nk + 1\right){1/2}$$ for all integers $n \geq 1$ and $k \geq 1$.

Summary

We haven't generated a summary for this paper yet.