Papers
Topics
Authors
Recent
2000 character limit reached

Assessing the quality of home detection from mobile phone data for official statistics

Published 20 Sep 2018 in cs.CY | (1809.07567v1)

Abstract: Mobile phone data are an interesting new data source for official statistics. However, multiple problems and uncertainties need to be solved before these data can inform, support or even become an integral part of statistical production processes. In this paper, we focus on arguably the most important problem hindering the application of mobile phone data in official statistics: detecting home locations. We argue that current efforts to detect home locations suffer from a blind deployment of criteria to define a place of residence and from limited validation possibilities. We support our argument by analysing the performance of five home detection algorithms (HDAs) that have been applied to a large, French, Call Detailed Record (CDR) dataset (~18 million users, 5 months). Our results show that criteria choice in HDAs influences the detection of home locations for up to about 40% of users, that HDAs perform poorly when compared with a validation dataset (the 35{\deg}-gap), and that their performance is sensitive to the time period and the duration of observation. Based on our findings and experiences, we offer several recommendations for official statistics. If adopted, our recommendations would help in ensuring a more reliable use of mobile phone data vis-`a-vis official statistics.

Citations (64)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.