Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compressed Sensing Parallel MRI with Adaptive Shrinkage TV Regularization (1809.06665v1)

Published 18 Sep 2018 in cs.CV

Abstract: Compressed sensing (CS) methods in magnetic resonance imaging (MRI) offer rapid acquisition and improved image quality but require iterative reconstruction schemes with regularization to enforce sparsity. Regardless of the difficulty in obtaining a fast numerical solution, the total variation (TV) regularization is a preferred choice due to its edge-preserving and structure recovery capabilities. While many approaches have been proposed to overcome the non-differentiability of the TV cost term, an iterative shrinkage based formulation allows recovering an image through recursive application of linear filtering and soft thresholding. However, providing an optimal setting for the regularization parameter is critical due to its direct impact on the rate of convergence as well as steady state error. In this paper, a regularizer adaptively varying in the derivative space is proposed, that follows the generalized discrepancy principle (GDP). The implementation proceeds by adaptively reducing the discrepancy level expressed as the absolute difference between TV norms of the consistency error and the sparse approximation error. A criterion based on the absolute difference between TV norms of consistency and sparse approximation errors is used to update the threshold. Application of the adaptive shrinkage TV regularizer to CS recovery of parallel MRI (pMRI) and temporal gradient adaptation in dynamic MRI are shown to result in improved image quality with accelerated convergence. In addition, the adaptive TV-based iterative shrinkage (ATVIS) provides a significant speed advantage over the fast iterative shrinkage-thresholding algorithm (FISTA).

Citations (1)

Summary

We haven't generated a summary for this paper yet.