Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bidirectional Attentional Encoder-Decoder Model and Bidirectional Beam Search for Abstractive Summarization (1809.06662v1)

Published 18 Sep 2018 in cs.CL

Abstract: Sequence generative models with RNN variants, such as LSTM, GRU, show promising performance on abstractive document summarization. However, they still have some issues that limit their performance, especially while deal-ing with long sequences. One of the issues is that, to the best of our knowledge, all current models employ a unidirectional decoder, which reasons only about the past and still limited to retain future context while giving a prediction. This makes these models suffer on their own by generating unbalanced outputs. Moreover, unidirec-tional attention-based document summarization can only capture partial aspects of attentional regularities due to the inherited challenges in document summarization. To this end, we propose an end-to-end trainable bidirectional RNN model to tackle the aforementioned issues. The model has a bidirectional encoder-decoder architecture; in which the encoder and the decoder are bidirectional LSTMs. The forward decoder is initialized with the last hidden state of the backward encoder while the backward decoder is initialized with the last hidden state of the for-ward encoder. In addition, a bidirectional beam search mechanism is proposed as an approximate inference algo-rithm for generating the output summaries from the bidi-rectional model. This enables the model to reason about the past and future and to generate balanced outputs as a result. Experimental results on CNN / Daily Mail dataset show that the proposed model outperforms the current abstractive state-of-the-art models by a considerable mar-gin.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Kamal Al-Sabahi (6 papers)
  2. Zhang Zuping (3 papers)
  3. Yang Kang (10 papers)
Citations (22)