Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A probabilistic framework for approximating functions in active subspaces (1809.06581v2)

Published 18 Sep 2018 in math.PR, math.NA, math.ST, stat.ME, and stat.TH

Abstract: This paper develops a comprehensive probabilistic setup to compute approximating functions in active subspaces. Constantine et al. proposed the active subspace method in (Constantine et al., 2014) to reduce the dimension of computational problems. It can be seen as an attempt to approximate a high-dimensional function of interest $f$ by a low-dimensional one. To do this, a common approach is to integrate $f$ over the inactive, i.e. non-dominant, directions with a suitable conditional density function. In practice, this can be done with a finite Monte Carlo sum, making not only the resulting approximation random in the inactive variable for each fixed input from the active subspace, but also its expectation, i.e. the integral of the low-dimensional function weighted with a probability measure on the active variable. In this regard we develop a fully probabilistic framework extending results from (Constantine et al., 2014, 2016). The results are supported by a simple numerical example.

Summary

We haven't generated a summary for this paper yet.