Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing Wasserstein Distance for Persistence Diagrams on a Quantum Computer (1809.06433v2)

Published 17 Sep 2018 in cs.CG, cs.ET, and quant-ph

Abstract: Persistence diagrams are a useful tool from topological data analysis which can be used to provide a concise description of a filtered topological space. What makes them even more useful in practice is that they come with a notion of a metric, the Wasserstein distance (closely related to but not the same as the homonymous metric from probability theory). Further, this metric provides a notion of stability; that is, small noise in the input causes at worst small differences in the output. In this paper, we show that the Wasserstein distance for persistence diagrams can be computed through quantum annealing. We provide a formulation of the problem as a Quadratic Unconstrained Binary Optimization problem, or QUBO, and prove correctness. Finally, we test our algorithm, exploring parameter choices and problem size capabilities, using a D-Wave 2000Q quantum annealing computer.

Citations (29)

Summary

We haven't generated a summary for this paper yet.