Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When Lift-and-Project Cuts are Different (1809.05794v2)

Published 16 Sep 2018 in math.OC and cs.MS

Abstract: In this paper, we present a method to determine if a lift-and-project cut for a mixed-integer linear program is irregular, in which case the cut is not equivalent to any intersection cut from the bases of the linear relaxation. This is an important question due to the intense research activity for the past decade on cuts from multiple rows of simplex tableau as well as on lift-and-project cuts from non-split disjunctions. While it is known since Balas and Perregaard (2003) that lift-and-project cuts from split disjunctions are always equivalent to intersection cuts and consequently to such multi-row cuts, Balas and Kis (2016) have recently shown that there is a necessary and sufficient condition in the case of arbitrary disjunctions: a lift-and-project cut is regular if, and only if, it corresponds to a regular basic solution of the Cut Generating Linear Program (CGLP). This paper has four contributions. First, we state a result that simplifies the verification of regularity for basic CGLP solutions from Balas and Kis (2016). Second, we provide a mixed-integer formulation that checks whether there is a regular CGLP solution for a given cut that is regular in a broader sense, which also encompasses irregular cuts that are implied by the regular cut closure. Third, we describe a numerical procedure based on such formulation that identifies irregular lift-and-project cuts. Finally, we use this method to evaluate how often lift-and-project cuts from simple $t$-branch split disjunctions are irregular, and thus not equivalent to multi-row cuts, on 74 instances of the MIPLIB benchmarks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.