Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modelling Latent Travel Behaviour Characteristics with Generative Machine Learning (1809.05781v1)

Published 15 Sep 2018 in cs.LG and stat.ML

Abstract: In this paper, we implement an information-theoretic approach to travel behaviour analysis by introducing a generative modelling framework to identify informative latent characteristics in travel decision making. It involves developing a joint tri-partite Bayesian graphical network model using a Restricted Boltzmann Machine (RBM) generative modelling framework. We apply this framework on a mode choice survey data to identify abstract latent variables and compare the performance with a traditional latent variable model with specific latent preferences -- safety, comfort, and environmental. Data collected from a joint stated and revealed preference mode choice survey in Quebec, Canada were used to calibrate the RBM model. Results show that a signficant impact on model likelihood statistics and suggests that machine learning tools are highly suitable for modelling complex networks of conditional independent behaviour interactions.

Citations (5)

Summary

We haven't generated a summary for this paper yet.