Instability of the solitary waves for the generalized Boussinesq equations (1809.05665v2)
Abstract: In this work, we consider the following generalized Boussinesq equation \begin{align*} \partial_{t}2u-\partial_{x}2u+\partial_{x}2(\partial_{x}2u+|u|{p}u)=0,\qquad (t,x)\in\mathbb R\times \mathbb R, \end{align*} with $0<p<\infty$. This equation has the traveling wave solutions $\phi_\omega(x-\omega t)$, with the frequency $\omega\in (-1,1)$ and $\phi_\omega$ satisfying \begin{align*} -\partial_{xx}{\phi}{\omega}+(1-{\omega2}){\phi}{\omega}-{\phi}{\omega}{p+1}=0. \end{align*} Bona and Sachs (1988) proved that the traveling wave $\phi\omega(x-\omega t)$ is orbitally stable when $0<p<4,$ $\frac p4<\omega2<1$. Liu (1993) proved the orbital instability under the conditions $0<p<4,$ $\omega2<\frac p4$ or $p\ge 4,$ $\omega2<1$. In this paper, we prove the orbital instability in the degenerate case $0<p<4,\omega2=\frac p4$ .