Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Limit distributions of expanding translates of shrinking submanifolds and non-improvability of Dirichlet's approximation theorem (1809.05570v4)

Published 14 Sep 2018 in math.DS and math.RT

Abstract: On the space $\mathcal{L}{n+1}$ of unimodular lattices in $\mathbb{R}{n+1}$, we consider the standard action of $a(t)=\mathrm{diag}(tn,t{-1},\ldots,t{-1})\in \mathrm{SL}(n+1,\mathbb{R})$ for $t>1$. Let $M$ be a nondegenerate submanifold of an expanding horospherical leaf in $\mathcal{L}{n+1}$. We prove that for all $x\in M\setminus E$ and $t>1$, if $\mu_{x,t}$ denotes the normalized Lebesgue measure on the ball of radius $t{-1}$ around $x$ in $M$, then the translated measure $a(t)\mu_{x,t}$ get equidistributed $\mathcal{L}{n+1}$ as $t\to\infty$, where $E$ is a union of countably many lower dimensional submanifolds of $M$. In particular, if $\mu$ is an absolutely continuous probability measure on $M$, then $a(t)\mu$ gets equidistributed in $\mathcal{L}{n+1}$ as $t\to\infty$. This result implies the non-improvability of Dirichlet's Diophantine approximation theorem for almost every point on a $C{n+1}$-submanifold of $\mathbb{R}n$ satisfying a non-degeneracy condition, answering a question arising from the work of Davenport and Schmidt (1969).

Summary

We haven't generated a summary for this paper yet.